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Abstract. We consider the secular motion of an ion stored in a Paul trap and interacting with a
standing laser field. It is shown that the Satinger equation of the system is analogous to the
linearized equation of a classically chaotic system. From the mathematical simulation between the
two systems we reveal several new properties in the fully quantum treatment. The results lead to
some parameter and energy gaps in which the motional ground state does not exist.

1. Introduction

Chaotic behaviour of the ions confined in a Paul trap has become a problem of increasing
interest over the last few years. Most of the works are focused on classically chaotic motions
of the systems with ion numbers greater than one [1-5]. Chatahused a semiclassical
approximation to show that chaos can occur in the system of a single trapped ion interacting
with a sufficiently strong standing laser field [6, 7]. Some quantum signatures associated with
the classical chaos have also been found in the systems [8, 9].

Recently, we applied a new perturbation technique to the Melnikov chaotic systems [10]
and obtained kinds of analytically chaotic solutions [11,12]. We also found that the technique
can be employed to the perturbed Sidinger equations [13]. The quantum mechanics of the
trapped single ion interacting with a weak laser field is described by thé&alyer equation
with harmonic potential and spatially periodical perturbation. In this paper, we show that
this Schbdinger equation is mathematically analogous to the linearized one of a Melnikov
chaotic system, by using time in place of the spatial coordinate. Simulation of the chaotic
system to the quantum system leads to a new type of wavefunction. The Melnikov chaos
criterion corresponds to the formula of energy correction, the sensitive dependence on the
initial conditions is associated with sensitivity on the boundary conditions which results in the
indetermination of the wavefunction in the fully quantum mechanical treatment. We define
stability of the quantum system as the mathematical analogy to the Lyapunov stability and
obtain the corresponding boundedness conditions of the wavefunction in total space. The
conditions imply that under the laser perturbation there exist some gaps of the parameter
region and the corresponding energy gaps in which the motional ground state is unstable. This
phenomenon can be observed by measuring the probability of the system in the ground state
for different system parameters.
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2. General solutions of the corrected Schisdinger equations

We consider the standard Paul trap setup [14, 15] with a standing laser field of freayency
and wavevectok aligned along the: direction, which couples the internal states of a single
two-level ion with mass: to the centre-of-mass motion. To avoid spontaneous emission we
suppose that the ion is initially in its internal ground state and the detuning of the laser field is
large [8]. Under the rotating wave and the secular approximations, the quantum mechanics of
the ion in a frame rotating with the laser frequency is governed by the Hamiltonian [6, 8]
R d? 1, ., hQ3

H——%@+Emv X +8—AC0$2kx+2¢) (1)
wherev is the angular frequency of the effective potential oscillatidgis the Rabi frequency,
A the frequency difference between and the atomic transition frequency, afidenotes the
relative position between the centre of the trap and the standing laser wave. After adopting the
dimensionless coordinateand energy.,

E=oax a=+/mv/h A= 2E/(hv) @)
the corresponding Sobdinger equation reads
92
Wee + (L — EW = % coS2V/2E +24)W (3)
V

with n = ﬁ being the Lamb-Dicke constant. Settingd) > Q3, the interaction term
denotes a perturbation. We apply the Rayleigh—&dimger expansions

U= i A% E= i EY for W9 <« WiV |ED| « |[ECY) 4)
to eqtlJ;Otion (3) and equl;ttt)a the sumtbf-order terms for both sides, obtaining
VO + (o — EHW® =0 (5)
U+ — EHPD =) i=12...,00 (6a)
el = % COS2v/2nE + 2¢) Wi~V — 2 Z EDWi=D, (6b)
" 4y A " hv = " "
The unperturbed equation (5) describes a harmonic oscillator with the well known solution
wO = N, H,E)e ¥ for A, =2EQ/(Rv)=2n+1 @

whereN,, is the normalization constant afj the Hermitian polynomials. Making use of the
previous result [13], we construct the general solutions oftth@rder corrected equations (6)
as

. § . § .
v =g, f fuel g — f, / gielde =12, 00 (8a)
A B

ni ni

H=v0 o =w? [ e (8b)

with A,, andB,, being the integration constants adjusted by the normalization and the boundary
conditions. Note that equations (8) are non-integrable and gvesnon-integrable for some

n. Applying equations (8) and (5) to equations (6), one can directly prove the general solutions.
We combine equation ¢§ with (8b) to simplify the solutions to the form

. £ £ ,
VA \1550)/ (xp,g°>)2</ \y,§°>s,§’>dg> de i=12...,00. (9
B, Api

ni

The general solutions contain all of the special solutions of equations (6), the bounded and
unbounded, which are determined by the constapt&ndB,,, .
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3. The corresponding classically chaotic system

In order to investigate chaotic behaviour of the quantum system, we mathematically construct
the Melnikov classically chaotic system

o+ (2 Ing + 1) ¢ =¢e(p,1) le(p, )] < 1 (10)

wheree(g, t) is a periodical function of time. The similar perturbation expansion

o0

e=> ¢"  lo" <" (12)
i=0

of equations (4) leads equation (10) to the set of equations
©
o9 + (2 In % + 1) 0@ =0 (12)
N @ 4 Lo
cp,(; + <2In - + 3) P =D (Y 1) i=12,...,00 j<i (13)

The unperturbed equation (12) has the homoclinic orbit
9@ =220 g0 = 2 — rg)e 20", (14)

Given equations (10) and (14), the Melnikov function [6, 7, 10] becomes
Altg) = / o (1 — 10)e® (9@, 1) de (15)

which measures the distance between the stable and unstable orbits in theéPedutian.
Obviously, the function has simple zeros, indicating the existence of chaos for the orbits whose
initial conditions are sufficiently near the homoclinic orbit (14). Inserting equations (14) into
equations (11) and (13) can easily bring about such an orbit. The insertion leads equations (13)
to the form

o +[B3— (-1 =V (V. )  i=12..00 j<i (16)

We are familiar with the general solutions of these equations [11, 12]
t t
o= [ 100 a1 [ e e (173
A; B;

=0 =-2t—19e 2" g=gO / (p”) 2 dr (17)

where A; and B; are the integration constants determined by the initial conditions. For the
integrandsfe® andge® with ¢ being the periodical function af equations (17) are non-
integrable. This non-integrability is a common signature of the chaotic system. Because the
function g tends to infinity ag — oo, the solutions in equations (17) are unbounded in the
general case. This implies that equations (17) are not the corrected solutions of equation (10),
since the unbounded” does not satisfy the inequality in equations (11) and causes divergence
of the series. However, the unboundedness of the functiorsp© = > ¢® and

o — 0¥ = Y% ¢ is associated with the Lyapunov instability [16] of the homoclinic

orbit (¢©, <p§°)). Fortunately, the unboundedness can be controlled by the necessary and
sufficient conditions [7, 11]

. t . .
Iﬂ(é)(A")ztﬂTooA feP (W rdr =0 for i=12...,00 j<i. (18)
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The case — —oo corresponds to the time reversal of equations (14), because of the time
reversal symmetry of equation (12). The necessity of the conditions is evident, because of
the unboundedness gfin equations (17) as — +oco. Given equations (18), we could use

the I'Hospital rule to easily derive the small superior limits|@f’| and|<p,(i)| fort — +o0

from equations (17). This is the proof of the sufficiency. Combining equation (15) ahyl (17
with equations (18) fot = 1 yields the Melnikov chaos criterion (fp) = 1Y — 1Y = 0.
Therefore, the homoclinic orbitis embedded in a chaotic attractor. Accordingto equations (18),
any infinitesimal change of the initial constadtamay break the boundedness conditions. This

is the sensitive dependence of the solution on the initial conditions [7]. Generally, the initial
conditions cannot be set experimentally. All of these make the solution (11) with equations (14)
and (17) the chaotic one.

4. Energy gaps of the quantum system

Now we make a comparison between the classically chaotic system (16) and the quantum
one (6). At first we see that after settijg— (¢t — tp) the linearized equations (16) of

the chaotic system (10) are similar to the corrected &tihger equations (6). Particularly,

for A, = A1 = 3, equations (6) possess the same form as equations (16). Secondly, the
eigenstates (© (\IJEO)) in equation (7) and its corrections?” (W) in equations (8) are similar

to (agree with) the homoclinic solution (14) and its corrected solutions (17) of the chaotic
system respectively, which implies equations (4) with equations (7) and (8) becoming the
indeterminate wavefunction. Consequently, we have the necessary and sufficient conditions
for the boundedness of equations (8) as

4 £
1 (Aw) = lim / fuiePde =0 for i=12...,00. (19)
X—> 00 Am‘

It is the mathematical analogy to the boundedness conditions (18) of the chaotic system.
The necessity of the conditions is exhibited by the unboungedn equations (8) as

x — £o0. Under these conditions, one can use the I'Hospital rule to prove the boundedness
of equations (8). This displays the sufficiency of the conditions. The necessity and sufficiency
show that once equations (19) are broken, we get unbounded corrections (8) and divergent
wavefunction (4). The divergence means that it does not represent a real physical state. The
unboundedness destroys the expansion conditions in equations (4) and shows it not to be a
solution of the system (3). These are in complete agreement with the classical case. As in the
Lyapunov definition, the unboundedness of the corrected solglion, ¥\ = ¥, — w©)

in the total space € (—oo, oo) can be defined as instability of the initial stat” under the
perturbations. The corresponding boundedness conditions have been given in equations (19).
Associating with the Melnikov chaos criteriaf(zp) = D _ 1D — 0, from the conditions

we have the corresponding criterion for the quantum system as

. oo .
ADED) =10 — 10 = / fuede =0 for i=12...,00. (20)
—00
Substituting equations £ and (&) into equations (20) yields the formulae of the energy

corrections,

—0Q

o) 92 . 2 i . .
WO 20 coq2¢/2ns + 20 WD — = N EDWI-D [ de = 0 i=1,2,....
/ n[m (2V2nE + 26) 0, hv; | dg j

(21)
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Figure 1. The boundedness curves for the Lamb-Dicke parameter 1/(2v/2) from
equation (24). The curves on the right-hand side are the amplification of ones on the left-hand
side, which show the curves falling only on the parameter integval40, 0.08), [7/2, 1.65) and

[7, 3.22). Therefore, the motional ground state cannot exist in the gafase [0.08, = /2) and

A¢o € [1.65, 7).

Let us take the motional ground stalt§” and its first-order correctior” as an example.
Applying equations (7) for = 0 to the formulae (21) produces the first-order correction to
the energ;E(‘, of the ground state,

SZ
@ — _ —27]
E§ / 8fA coS2v2nE + 2¢)e ¢ di = A —9 cog2¢)e (22)
The substitution of equationsi§ (8b) and (22) into equations (19) for= 1,n = 0 gives
92 +o0
O 0 / F(EYdE =0 23
O+ 4ﬁUA Aoy (é) g ( )

F(£) = [cOS2v/2nE + 2¢) — cog2p)e 2 e 5. (230)
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Figure 2. The boundedness curves for the paramgter5/(2+/2), which reveal the width of the
instability gaps decreasing tops € [0.24, 1.5) andA¢4 € [1.82, 3.07) for the given Lamb-Dicke
parameter,.

A careful calculation leads them to the simplified form
+o0 0 +o0

/ F(é:)d$=/ F(é)d§+/ F(§)dg
A 0

01 Ao1
AO]_ o0
S / F(£) dé — sin(2¢) / sin(2v2né)e & dé = 0. (24)
0 0

This is the boundedness condition of the first-order soluﬁélh, under the laser perturbation.

In conditions (24) we show that the boundedness of the corrected wavefunction of the
motional ground state depends on the system paramgtérand the boundary constanAt,;
in the first-order approximation. From equation (24) we drawgheersusAg; graphs for
figure 1: n = 1/(2V/2), figure 2: n = 5/(2v/2) and figure 3:n = 5/4/2, respectively.
Figure 1 displays the curves associated with boundedness to be restricted in the interval
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0.3

Figure 3. The boundedness curve for the parameter
M 5/+/2 that displays the curve density tending to a large value
0 1 2 3 4 5 inthe parameterregion€ Ap; < 2.2,and-0.2 < ¢ < 0.3
as the parameterincreases to a large value. The quantum
A motion of the system sensitively depends on the system
01 parameters and boundary constant in this region.

¢ € [0,0.08), [7/2,1.65 and [r, 3.22) for an arbitraryAp; value. This implies that for

the parametep = 1/(2+/2) the correction to motional ground state is unbounded in the
parameter gapA¢; € [0.08, 7/2) andA¢, € [1.65, ). ... Figure 2 shows the width of the

gaps decreasing th¢s € [0.24, 1.5) andA¢4 € [1.82, 3.07) with the increase of the Lamb—

Dicke parametern. Combining these with equation (22) we can obtain the corresponding
energy gaps—0.082 0.082) and(—0.02, 0.02), respectively corresponding ip= 1/2+/2

andn = 5/2v/2, as in figure 4. The unboundedness means that the corrected motional
ground state cannot exist in these gaps. This phenomenon can be observed by measuring the
probability of the ion in the ground state [17, 18] for differgnvalues. Combining figure 2

with 3 we see that in some parameter regions the curve density will become very large as the
parameter increases to a large value. Clearly, only for the parameters lying on the curves is
the corrected wavefunction bounded so that the motional ground state is stable under the laser
perturbation. Any infinitesimal departure of the boundary constant and the system parameters
from the curves may cause unboundedness and instability. This is the sensitive dependence of
the quantum system to the boundary conditions and the system parameters.

In the distribution region of the curve in figure 3, one valuegomay correspond to
multi-values ofAq;. This implies degeneracy of the corrected states, since equations (9) may
give multi-states for thesdy; and equation (22) only gives one value of energy for this
The meaning of the parametejsand ¢ are familiar to us. Fixing a set of parameters
and¢, the boundedness of the corrected solut[qff to the ground statéféo) are uniquely
determined by the constanly;;. What is the boundary constany;? Mathematically, the
general solutionllél) of the second-order differential equations (6) for= 0 andi = 1
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contains the two arbitrary constandg; and By;, which depend on the physically definite
conditions. For the considered spatial problem with boundagy+oco, the definite conditions

are just the boundary conditions (19) and a normalization condition. However, in the example
n = 0,i = 1, we see that thelp; cannot be solely determined from the corresponding
boundary condition (24), while the normalization condition can only give the constant

for any Ag; value. The indetermination of the boundary constagit and the sensitivity of

the system on the constant leads to the indeterminate wavefunction (4) with equations (7) and
(8). From equations (8) we see that any infinitesimal change of the boundary catgtant
could be infinitely amplified, since the factgy tends to infinity as — 4o0. Only when the
boundedness conditions (19) are strictly held, do we have the bounded solifibaad the

stable eigenstateg®. Although the boundary constant,; is indeterminate, we can adjust

the controllable parameters and ¢ to fit the conditions (19) for arbitrary,,;. Figures 1,

2 and 4 exhibit the suitable regions for the adjustmenp a&s Iz /2 forl = 0,1,2,... and

the considered case. Once the conditions are fitted, the ion is stably confined and behaves
regularly in the trap. However, such quantum motion sensitively depends on the boundary
conditions and the system parameters.

5. Conclusions and discussions

In conclusion, we have investigated the quantum motion of a trapped ion interacting with a
standing laser field. We find that the S@tiinger equation of the system is similar to the
linearized equation of a classically chaotic system and that their solutions possess the same
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form after using time instead of the spatial coordinate. We define the stability of the quantum
system as the mathematical analogy to the Lyapunov stability of the classical system. The
corresponding solution and the necessary and sufficient boundedness conditions are obtained.
The conditions imply the sensitive dependence of the system on the boundary conditions
and system parameters and contain formulae of the energy corrections. In order to obtain
the required quantum states, we must adjust the control parameters to fit the corresponding
boundedness conditions. Taking the motional ground state as an example, we demonstrate that
there exist some parameter gaps and energy gaps in which the ground state is unstable under
the laser perturbation. The advances for cooling a single trapped ion to a motional ground
state [17] could lead to an experimental observation of this phenomenon.

Although the results formally contain anith-order corrections to the eigenstates
and eigenenergy with arbitrary quantum numiagrthe cases > 1 andn > 0 are
mathematically complicated. The non-integrability of the corrected solutions necessitates
numerical calculations. The above-mentioned results can be directly extended to the system
with two trapped ions [19]. By using the perturbation technique, we will extend the results to
the time-dependent case in further work.
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